Weak temperature dependence of the free energy surface and folding pathways of structured peptides.
نویسندگان
چکیده
The thermodynamics and energetics of a 20-residue synthetic peptide with a stable three-stranded antiparallel beta-sheet fold are investigated by implicit solvent molecular dynamics (MD) at 330 K (slightly above the melting temperature in the model) and compared with previous simulation results at 360 K. At both temperature values, the peptide folds reversibly to the NMR solution conformation, irrespective of the starting conformation. The sampling of the conformational space (2.3 micros and 25 folding events at 330 K, and 3 micros and 50 folding events at 360 K) is sufficient to obtain a thermodynamic description of minima and transition states on the free energy surface, which is determined near equilibrium by counting populations. The free energy surface, plotted as a function of two-order parameters that monitor formation of either of the beta-hairpins, is similar at both temperature values. The statistically predominant folding pathway and its frequency (about two-thirds of the folding events) are the same at 330 K and 360 K. Furthermore, the main unfolding route is the reverse of the predominant folding pathway. The effective energy and its electrostatic and van der Waals contributions show a downhill profile at both temperatures, implying that the free energy barrier is of entropic origin and corresponds to the freezing of about two-thirds of the chain into a beta-hairpin conformation. The average folding rate is nearly the same at 330 K and 360 K, while the unfolding rate is about four times slower at 330 K than at 360 K. Taken together with previous MD analysis of alpha-helices and beta-hairpins, the present simulation results indicate that the free energy surface and folding mechanism of structured peptides have a weak temperature dependence.
منابع مشابه
Molecular Dynamics Simulation of Al Energetic Nano Cluster Impact (ECI) onto the Surface
On the atomic scale, Molecular Dynamic (MD) Simulation of Nano Al cluster impact on Al (100) substrate surface has been carried out for energies of 1-20 eV/atom to understand quantitatively the interaction mechanisms between the cluster atoms and the substrate atoms. The many body Embedded Atom Method (EAM) was used in this simulation. We investigated the maximum substrate temperature Tmax and...
متن کاملEffects of Some Thermo-Physical Parameters on Free Convective Heat and Mass Transfer over Vertical Stretching Surface at Absolute Zero
Effects of some thermo-physical parameters on free convective heat and mass transfer over a vertical stretching surface at lowest level of heat energy in the presence of suction is investigated. The viscosity of the fluid is assumed to vary as a linear function of temperature and thermal conductivity is assumed constant. A similarity transformation is applied to reduce the governing equations i...
متن کاملKinetic analysis of molecular dynamics simulations reveals changes in the denatured state and switch of folding pathways upon single-point mutation of a beta-sheet miniprotein.
The effects of a single-point mutation on folding thermodynamics and kinetics are usually interpreted by focusing on the native structure and the transition state. Here, the entire conformational spaces of a 20-residue three-stranded antiparallel beta-sheet peptide (double hairpin) and of its single-point mutant W10V are sampled close to the melting temperature by equilibrium folding-unfolding ...
متن کاملبررسی پذیرفتاری مغناطیسی AC در ابررساناهای حجمی (Bi-Pb)2223
The temperature dependence of ac susceptibility of (Bi-Pb)2223 polycrystalline samples was measured as a function of frequency and ac field amplitude. Analysis of the temperature dependence of the AC susceptibility near the transition temperature (Tc) has been done employing Bean’s critical state model. The observed variation of intergranular critical current densities (Jc) with temperature i...
متن کاملThe effect of temperature on optical absorption cross section of bimetallic core-shell nano particles
In this paper, the temperature dependence on optical absorption cross section of the core shell bimetallic nanoparticles (NPs) is investigated in quasi static approximation. Temperature dependence of the plasmon resonance is important issue because of recent applications of NPs of noble metal for heat treating of cancer and the computer chips. The effect of temperature on surface plasmon resona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proteins
دوره 47 3 شماره
صفحات -
تاریخ انتشار 2002